	Title of the reference	Name of the fiber	Select application	Materials	Products developed	Technologies	Equipment	Developing methods	Risks	Dissipate properties	Conductive propertie	Chemical safety
1	A novel breathable flexible metallized fabric for wearable heating device with flame-retardant and antibacterial properties	Copper Nanoparticles Networks/Nylon 6	Nanoparticles nonferrous for flexible semiconductors	Copper Nanoparticles Networks/Nylon 6 Woven Fabric (CNNs/NWF) based on PA/APTES hybrid coating	Wearable heater; anti-bacterial, breathable, flame resistant	Sol-get; Catalytic surface activation; Electroless deposition	Standard wet chemistry equipment	Standard wet chemistry methods	Copper nanoparticles are a moderately toxic material	High heat dissipation, thermal conductor	Electron conductor	Oxidation resistant
2	Conductive cotton fabric using laser pre-treatment and electroless plating	Cotton (laser treated; copper plated)	Flexible sensors/actuators	Laser-treated conductive cotton fabrics by means of copper metallization techniques	Health monitoring; smart sensory; wearable electronics; actuator systems	Laser treatment of cotton fabric; electroless copper deposition	Adjustable CO2 Laser source; Standard wet chemistry equipment	Modification of cotion fabric, laser treatment, wet chemistry	Copper remains exposed to sweat and produces water soluble oxidations products	-	Electron Conductor	Health Level 2: Intense or continued but not chronic
3	Plasma-based treatments of textles for water repellency	plasma-treated clothing	Smart flexible sensors/actuators non-invasive wearable	Parms treatment of textiles is now used in an emerging factor of the textile healthy. This refers to the production of smart textiles, means textiles are factoristic shart have benchoogload components such as microcontrollers, sensors, actuators, and even computers emetded into them. Paisma treatment of textiles is used in this industy spart of the production of integrated circuits and it is also used to make these components Syndpolicit.	Hydrophobic coatings are a very important use for plasma teatment of toxibites as it has benefits for medical purposes. The fabric that bib costs, gives, and surgical structures for testilise to nuels them hydrophobic, not being able to absorb water. This makes them resistant to drive and bacteria: When hydro bi- creaste a strells setting such as in an operating comm. this is a mosh desined characheristic	Plasma treatment of textiles is a growing function of plasma technology. Using Thierry's low- pressure systems, plasma treatment of textiles is used to pre- treat fibers to increase wetability which allows for solvent free dyes to absorb and bond very strongly	Plasma treatment of textiles is used to pre-treat fibers to increase wettability which allows for solvent free dyes to absorb and bond very strongly.	plasma treatment of statles is used to coal fabric with a specialized layer with varying characteristics.	N/A	It has proven to be successful in shrink-resist treatment of wool with a simultaneously positive effect on the dyeing and printing	temperature safety	-
4	New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators	Shape memory alloy.	Flexible sensors/actuators	Shape memory alloy	Mmedical rehabilitation exoskeleton for the elbow with one degree of freedom for flexion- extension.	Development of SMA-based actuator,	-	Modelling in MATLAB/Simulnik.		Nonlinear behaviour in heating/cooling processes.	Electroconductive	Safe
5	Presentation of textile pneumatic muscle prototypes applied in an upper limb active suit experimental model	Kevlar and Twaron aramid yarns	Flexible sensors/actuators	Twist braided cords	prototype of textile pneumatic muscles	Braiding	-			Impermeable to air, externally collocated, cylindrical shape.	Electroconductive.	Safe.
6	Electrical Characterization of Conductive Threads for Textile Electronics	Silver coated polyamide	Smart flexible sensors/actuators non-invasive wearable	Silver coated polyamide	wearable electronics	Silver-Tech by Shieldex®	Spinning	3D using Autocad by Autodesk,		Conductivity	conductive threads	Possible toxicity
7	The electromagnetic shielding properties of some conductive knitted fabrics produced on single or double needle bed of a flat knitting machine	copper (Cu) and stainless steel (SS) yarns	Textiles for electromagnetic shielding	Kritted fabric	Fabric for electromagnetic shielding	Knitting	electronic flat bed knitting machine	Knitting from electroconductive yarns	-	Low resistance, electromagnetic shielding, flexibility	Electroconductive	Safe
8	A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric	Metal fibres	Textiles for electromagnetic shielding	woven fabric containing metal fiber yarns	woven fabric for electromagnetic shielding	Weaving	Weaving loom	grid model, theoretical calculation		shielding effectiveness	Electroconductive	Safe
9	Textiles feel the pressure		Smart flexible sensors/actuators invasive wearable	heat-sensitive thermoplastic polyurethane	printed pressure sensors	3D printing	3D printer	pressure sensors incorporation into the fabric		Stretchability and flexibility		
10	Poly(vinylidene fluoride) nanofiber-based piezoelectric nanogenerators using reduced graphene oxide/polyaniline	electrospun poly(vinylidene fluoride) (PVDF) nanofiber	Nanoparticles nonferrous for flexible semiconductors	rGO- and rGOPANI-doped PVDF nanofiber mats and rGO, PANI and rGOPANI-spray- coated PVDF nanofiber mats	electrospun poly(vinylidene fluoride) (PVDF) nanofiber-based piezoelectric nanogenerators	Electrospinning	Electrospinning	Doping of nanofibres.	-	Converting of waste mechanical and radiative energy to electricity that can be used in self-energy generating systems and sensor technologies	Conductive	reduced graphene oxide (rGO)
11	Flexible nanogenerators for wearable electronic applications based on piezoelectric materials		Smart flexible sensors/actuators non-invasive wearable	Bio-based piezoelectric materials	flexible piezoelectric nanogenerators	Flexible composites				Flexibility	Conductive	
12	Highly skin-conformal wearable tactle sensor based on piezoelectric-enhanced triboelectric nanogenerator	Nanofibres	Smart flexible sensors/actuators non-invasive wearable	piezoelectric-enhanced triboelectric nanogenerator	skin-conformal wearable tactile sensor	Spin-coating	-		N/A	high flexibility, excellent sensitivity and wide measurement range	Conductive	
13	Modified graphene-based nanocomposite material for smart textile biosensor to detect lactate from human sweat	Hydrophobic cotton and embroidered conductive silver yarn	Smart flexible sensors/actuators non-invasive wearable	graphene-based nanocomposite	Smart-textile biosensor for lactate analysis from sweat	embroidering and coating	-		-	low-cost, simple, fast, and reproducible properties	Conductive	-
14	Aluminium powder used for textile coating	raluca.maria.aileni@g mail.com	Textiles for electromagnetic shielding	Aluminium	Conductive textile coated with aluminium	Direct printing, Spraying, Lamination, Sputter Coating	Print frame, Cold spray, Fabric lamination machine, Magnetron sputter coating system	Textile coating using paste based AI microparticles (printing, kamination, spraying methods). Textile coating with thin layer of aluminium by sputtering method.	1. neurotoxic effect; 2. carcinogenic effect; References: Klotz K Waintenbefar W Neff E	Yes	Yes	Satety data sneet auminum: https://www.cariroth.com/medi as/SDB-5285-GB- EN.pdf?context=bWFzdGVyf HNIY3VyaXR5RGF0YXNoZ W/00-buckter5MF20YXPab
15	A carbon nanotube-based textile pressure sensor with high-temperature resistance; Review of toxicity studies of carbon nanotubes	CNTs fibers	Flexible sensors/actuators	Textile coated with CNTs.	Antennas, electromagnetic shields.	Foulard, Screen printing, Textile lamination machine.	Foulard, Textile lamination machine, 3D printer.	Direct printing, lamination, transfer coating, and immersion.	Health risks: inflammation, injury, fibrosis, and pulmonary tumors.		semiconductor	CNT toxicity includes oxidative stress, inflammatory responses, malionant transformation.
16	Kritted resi: A highly flexible, force-sensitive knitted textile based on resistive varias	RESi	Smart flexible sensors/actuators non-invasive wearable	RESi yams	RESI yarn is used to develop wearable sensors	Weaving or knitting technologies	Weaving loom, Knitting Machine Shima Selki	Weaving, knitting or sewing.	No information associated.	no	Conductive	No information associated.
17	Piezoelectric force response of novel 2D taxilie based PVDF sensors; 2. Are fluoropolymers really of low concern for human and environmental health and separate from other FFAS; 3. Effect of electoode patient on the outputs of prezosensors for wire bonding process control.		Smart flexible sensors/actuators non-invasive wearable	Polyvinylidene difluoride (PVDF)	Plezo-resistive pressure sensors.	Lamination, Direct printing	Lamination machine, Printing screen	Lamination, Direct printing	Health risks: Initiation by eye contact, skin contact or inhalation; Physical/heartheal hazards: Fammable; A Hazards for the environment: During hacropolymer production, the emissions can have a negative environmental impact. Moreover, PCDF is not biodegradable.	Yes. Also, PVDF has piezo-, pyro- , and ferroelectric properties.	PVDF conductivity strongly depends on temperature and frequency	Product contains no hazardous ingredients lable to be disclosed.
18	Piezoresistive sensing in chopped carbon fiber embedded PDMS yarns	Chopped carbon fiber (CCE) polycimethylaril	Flexible sensors/actuators	Composite materials: Chopper carbon fiber integrated into polymeric matrix PDMS.	Plezoresistive CCF/PDMS composite for strain sensors development.	Injection	Injection device based syringe	1. mechanical blending of CCF and PDMS base polymer; 2. CCF/PDMS injection using syringe.	N/A		Conductive	
19	Stretchable conductive yarn with extreme electrical stability pushes fabrication of versatile textile stretchable electronic	Muti-layer helical yarn (MLHY)	Flexible sensors/actuators	Woven or knits structures based on MHLY yarns.	Textile stretchable sensors.	Wrapping: Weaving, Sewing and Knitting.	Wrapping machine; Weaving loom; Knitting machine; Sewing machine	A. MHL Yums fabrication: 1. Cot fibers were wrapped around a pro-strekted polynerithane fiber forming the first layer: 2. Polymide 66 yams were wrapped on the first layer forming the second layer: 3. The second layer was coated with waterborne polynerithane (WPU) forming the third layer; 8. Benerors fabrication: MHL Y yams are weaved, kritted or integrated on textles surface through Sewing, Kritting, Weaving	-	no	conductive	-
20	Optimization of electroless nickel plating on polyester fabric		Textiles for electromagnetic shielding	Nickel coated polyester fabric	Flexible electromagnetic shields	Plating technology	Electroplating Plants	Electroless plating	Health risks: skin irritation, allergy, cardiovascular and kidney diseases, lung fibrosis, lung and nasal cancer.		conductive	allergy, cardiovascular and kidney diseases, king fibrosis, king and nasal
21	In Situ Loading of Polypyrrole onto Aramid Nanofiber and Carbon Nanotube Aerogel Fibers as Physiology and Motion Sensors	ANF/CNT/PPy aerogel fiber	Textiles for electromagnetic shielding	Porous aramid nanofibers (ANF), carbon nanotube (CNT) aerogel fibers (CNT) coated with polypyrole (PPy) layers	ANF/CNT/PPy aerogel fiber used for motion sensors	wet spinning	Wet spinning machine	wet spinning	Health risks: CNT exposure can lead to asthma, bronchitis, emphysema and lung cancer	no	conductive	
22	Energy Harvesting from Piezoelectric Textile Fiber	Piezoelectric textile bi-component fiber	Flexible sensors/actuators	PVDF sheath, Conductive composite core	Piezoelectric fibers for energy harvesting devices	Melt Spinning, Electrospinning	Melt spinning equipment (Extrusion Systems Limited, UK), Electrospinning equipment	Meit Spinning, Electrospinning	-	Yes		
23	Knitting and weaving artificial muscles		Flexible sensors/actuators	Textuator	Actuators based textiles and electroactive polymers: artificial muscles	weaving, knitting, coating	Weaving loom, Knitting machine, Film Coating Machine	weaving, knitting, coating			conductive	N/A
24	Energy harvesting textiles for a rainy day: woven piezoelectrics based on meti-spun PVDF microfibres with a conducting core	-	Smart flexible sensors/actuators non-invasive wearable	Textile bands with yarns of melt-spun PVDF microfibres with conductive core	Energy harvesting textile	Weaving	Weaving loom	weaving	N/A	-	conductive	
25	Energy harvesting textiles for a rainy day: woven piezoelectrics based on meit-spun PVDF microfibres with a conducting core	Piezorezistive microfibre based carbon	Smart flexible sensors/actuators non-invasive wearable	PVDF (sheath), Core (carbon black/polyethylene), Outer layer: silver paste	Piezorezistive microfibre coated with silver paste for sensors for heartbeat and respiration sensors	Melt spinning, coating	Melt spinning machine, Yarn coating machine	melt spinning, coating	Health risks: inflammation, allergies in case of skin contact with a surface coated with silver (rarely reported).		conductive	N/A
26	deposition.	gold coated paramide	Flexible sensors/actuators	pararamide and gold	none	none	none	yes	none	no	yes	not relevant
27	nosocomial pathogens	paramide	Smart flexible sensors/actuators pop-inverses	paramide and copper	none	none	none	yes	none	none	yes	none
28	Metallization of synthetic fibres by nickel Antimicrobial properties of gold and copper-coated	nickel coated PAN	wearable	nickel and PAN	no	no	no	yes	skin irritation due to nickel	no	yes	skin irratation due to nickel
29	textile electrodes produced though electro-less deposition Electrical Characteristics and Performance of Yams	coated textiles	Smart nexible sensors/actuators non-invasive wearable Smart flexible sensors/actuators non-invasive	gold copper and pararamide	yes	none	no	yes	no	no	yes	no
30	made of Gold Coated Fibers	gold coated fibers copper coated	wearable	gold and paramide	yes	none	none	yes	none	none	yes	none
31	Development of conductive threads using	paramide fiber	Textiles for electromonatic shi-tife-	copper coated paramide tabric	yes	no	no	no	no	no	yes	none
32	experimental laboratory device DEVELOPMENT OF GOLD COATED THREADS AND IMPLEMENTATION INTO A WEARAPI F	gold coated thread	Flexible sensors/actuators	gold coated thread	yes yes	no	electroless coating bath	no	no	no	yes	no
34	SVSTEM Design and prototyping of wearable measuring system for trunk movement using textile sensors	nano electro active polymer	Flexible sensors/actuators	nano electro active polymer	yes	yes	motion detector	no	no	no	yes	no

35	Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup	Liquid crystal elastomer (LCE)	Plexible sensors lactuators	Acrylate liquid crystal (LC) monomer (RMS2, 5%) purify space 2,27, en 1,3 chrylanetosol (JMS) provided and the space of the space of the space of the space of the space why consolenier 1,3,5-table 1,3,5-table 1,3,5-table (Act (H34,H54) horizon (TMATC) g6% purify) and 2,4,6,8-tetramethyle 2,4,6,8 tetravinyley-clotterasloxane (TVCS, 90% purify)	The LCE fibers can be lost, seen, and voven form a variety of smart taxtles. The fiber is also used to mimic bicep mucacles with both imcoproming further intelligent characteristics, such as conductivity and biosening into a single fiber, the LCE fibers could be potentially used for smart chains, addr tobotis, and biomedical devices	3D printing, spinning	A proof of concept device for spiring LCE filters, coak-ring the thread extraction as 30 protect head onto a motor-controlled collection bobbin, with U spit completing the crossinking in the fiber	It can be produced by using direct risk write (DIW) printing. Other methods are based on electro-spinning or micro-fluidic lectriniques	to-weak light intensity does not bestow encogh-cross-linking points to the stretched algomer ink in a short time, so the stretched algomer in the stretched point guide under the stretched point of the stretched and the stretched which proventing the flobs the stretched with proventing the flobs the stretched excluded algomer filament before alignment, and causes jamming the nozzle.	Considerable stored elastic energy density, able to thermally actuate, with a much faster response due to the fast heat diffusion across thin material.	Additional components can be incorporated to donate conductive properties	N/A
36	High-sensitivity, fast-response flexible pressure sensor for electronic skin using direct writing printing	N/A	Smart flexible sensors/actuators non-invasive wearable	Graphene nanopiatelets and multi-walled carbon nanotubes, PEO, ethanol	energy production, biomedicine, bionic robots, wearable electronics. In particular	direct-write printing technology based on Weissenberg principle	self-made direct-write platform used to fabricate the sensitive structure of the sensor, direct writing printing system	GNPs/MWCNT filed conductive composite flexible pressure sensors on PDMS substrates	The increase in the bending number of the sensitive structure inevitably lead to an increase in the sensor area, which was not conducive to integrated manufacturing. It is needed to select a moderate bending number of the sensitive unit to obtain a good detection effect.	Artificial electronic skin simulates the basic characteristics of human skin (such as pressure perception, stretchability and transparency	three-dimensional conductive network providing more transmission channels and enhanoing the conductive stability	N/A
37	Flexible Textile Strain Sensor Based on Copper- Coated Lyocell Type Cellulose Fabric	Lyocel	Smart flexible sensors/actuators invasive wearable	Potassium hydrogen L-tartrate, Tin(II) cloride X 2 hydrate, formaldehyde, copper sulphate pentahydrate, ethanol, armonia, sodium carbonate, silver nitrate, sodium hydroxide, woven cellulose lyocell fabric	Energy storage devices, photodetectors, pressure sensors, light emitting displays	knitting, wowing, electrospinning machines,	knitting, wowing, electrospinning machines	Coating of metallic copper layers on woven cellulose lyocell fabrics through electroless deposition	Permanent stress and deformation of conductive textiles could lead to demages.	temperature sensing	introduced electrical conductivity through the coating	Cellulose is an important textile substrate due to its biodegradable, biocompatible, eco-friendly, non-toxic and renewable properties.
38	Application of Polyaniline for Piexble Semiconductors	Wool, polyamide	Nanoparticies nonterrous for fiscible semiconductors	Artine 69%, polystyrene sufonate acid, annorum perudiak, diatilei saler, atkerolom, weol, polyantide	Conducting polymens, such as polyaniline (PAM), are used in numerous applications in sensors, in testiles with antimicrobal transfer, electrotherapy, defines technology and electromagnetic materials for monitoring transfer, electrotherapy, defines technology and electromagnetic materials for monitoring tasch as wearable strain gauge materials that can be used for biomechanical monitoring.	Attenuated Total Reflectance (ATR), Scarning Electron Microscopy (SEM), Atomic Force Microscopy (AFM)	Attenuated Total Reflectance (ATR), Scarning Electron Microscopy (SEM), Alomic Force Microscopy (APM)	Conducting testilas (exol, polyamida), coated with polyamidee (PAN),-polympres autors: aud (PSSA), coatened who grithesis methods water based and exobine in chandram.	NA	low moisture relention	Electronic and lonic conductivities	NA
39	Polymanic butile-based electromagnetic interference alletding materials, for synthesis, mechanism and applications – A review	Flexible electromagnotic interference (EMI) shielding materials	Teelles for electromagnetic shelding	Term radar absorbing makinak. 10 (metalik nanosteries, cartion manbabe), and 20 (gradrene, toom shall falles over giving apport in conductive path in the matrix.	Large range of applications from everyday use is high-tech applications	Kotting, Spinning	Katting, Spinning	Edensitely physically and/or chemically manipulation of various polymeric the comparison to mean users a nuclear method of the second	The delectric loss depends on conductivity and polarization lises. A conductivity and detectric loss. Cn the differ hand, polarization loss depends and the hand, polarization loss depends processes, and is based on electronic, lorisdop or loss of the loss of the loss of polarization.	The absorbed energy by EM of the statistical statistical and the form of thermal energy through detective is as advancements, and technological advancements, and efficient shall ent appears other of hanacteristics such as phenolytic number to be as phenolytical advancements, and tabication and cost. effectiveness, and both stallisation and cost.	For EM waves having frequency >300 MHz, higher electrical conductivity is required for equal attenuation of magnetic components. But in case of lower frequency radiations frequency radiations the magnetic component is very difficult and possible with ferromagnetic materials.	Safe
40	Textile integrated sensors and actuators for near- infrared spectroscopy	Cotion	Pasible sensors lactuators	cottor yarn, LEDs, Yamistors, photodiodes and transimpodance amplifiers	Smart testiles with integrated electronics and in particular optic devices are of high interest for the near interest spectroscopy and and NNI are applied in many clinical applications, using different types of instruments to track oxygenation and blood flow in testate	The system consists of two major building blocks: the sensor total with LEDs, transistor devices to control the LEDs, photoclodes and transimpediance amplifiers to contert the photocarrent thin to a voltage. The and dista acquisition hardware, consisting of a control board with a microconseler to switch the LEDs on and off and to sample the output voltages of the transimpediance amplifiers. The costing and point the data via a USB connection to a host compute for stange and points.	INdustrial narrow fabric born	Integration of the light entiting closes (LEDs) and photocloses reconsary for near-infrared spectroscopy into a woven loadle using flexible plastic strips	textile integration of sensors and actuators influences the VIRG measurements, and VIRG systems, such as distance variation between source and detector or motion artifacts	mechanically flexibility	Conductive threads are integrated to establish interconnections among individual floxible plastic strips.	Safe
41	Epidermal Patch with Glucose Biosensor: pH and Temperature Correction toward More Accurate Sweat Analysis during Sport Practice	polyester	Smart flexible sensors/actuators non-invasive wearable	Polyester sheet, glucose sensor consisting of a three-electrode system, carbon link, reference electrode (RE1) consisting of just the straight track made of Ag/AgCL enzymatic layer	Flexible skin patch that comprises a microfluidic cel designed with a sweat collection zone coupled to a fluidic channel in where the needed electrodes are placed: glucose biosensor, pH potentiometric electrode and a temperature sensor	3D printer	3D printer	Glucose, pH, and T sensors fabricated on a flexible polyester sheet as the substrate. The sensor array is then attached to a 3D-printed microfluidic cell by using adhesive transfer tape, so that the electrodes were placed coinciding with the microfluidic channel	N/A	NA	N/A	Safe
42	Three-Dimensional Au/Ag Nanoparticle/Crossed Carbon Nanotube SERS Substrate for the Detection of Mixed Toxic Molecules	3D bimetal Au/AgNP/crossed CNT substrate	Microparticles ferrous for flexible semiconductors	Si/SiO2 substrates, CNT powder, AgNP colloidal solution	diverse applications in toxin sensing, environmental monitoring, foodsafety, cirical diagnosis and cultural heritage	electron microscopy equipped withX- ray energy spectrometer, and transmission Electron Microscope, equipped withX-ray energy spectrometer, and transmission Electron Microscope, UV-vis Spectrophotometer, -ray phobelectron spectrometer instrument, Raman spectrometer	electron microscopy equipped withX- ray energy spectrometer, and transmission Electron Microscope, equipped withX-ray energy spectrometer, and transmission Electron Microscope, UV-vis Spectrophotometer, -ray photoelectron spectroscopy instrument, Raman spectrometer	Three-dimensional (3D) Au/Ag nanoparticle(NP)/crossed carbon nanobube film SERS substrate.	N/A	NA	wide-range electric field distribution	Safe
43	Application of Fe3 O4 nanoparticles on cotton fabrics by the Pad-Dry-Cure process for the elaboration of magnetic and conductive textiles	cotton	Nanoparticles ferrous for flexible semiconductors	Cotton (CO) woven fabric, Iron oxide nanoparticles Fe3O4, Ethanol	applications in the fields of medical treatment, smart clothing, electronic textiles, biomedicine, sportswear, protective clothing, and space exploration activities	Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope	Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope	treatment of cotton using magnetic iron oxides nanoparticles in order to design a multifunctional material with interesting magnetic. Itermal and electrical properties characterized by VSU, ICSA and Resistivity massurements, anaparticles on the surface of the cotton fabric by the Pad-Dry-Cure method.	N/A	N/A	The coating of cotton fabric by Iron oxide nanoparticles gives an electrical conductivity to the fabric which makes it a semi-conductor material	Safe
44	Smart Nanotextiles: Materials and Their Application. In Encyclopedia of Materials: Science and Technology	E-textiles	Smart flexible sensors/actuators invasive wearable	Textilos	medical devices, sport equipment, defence devices	Weaving, knitting	weaving loom, knitting machine	a thread can be made to conduct electricity by either coating it with metals like copper or silver. It can also be made by combining metal fibres with cotton or nyion fibres when it is spun.	damages of e-textiles at washable process: temperature, mechanical action, chemical now as Sinners factors	N/A	yes	Safe
45	Overview of wearable electronics and smart textiles	Washable electronics	Smart flexible sensors/actuators invasive wearable	Textiles	wearable electronics	knitting, weaving	knitting machine, weaving loop	same as e-textiles	no	yes	yes	safe
46	E-Textile and its Applications	passive smart textile	Smart flexible sensors/actuators non-invasive wearable	Fabric	UV protective, Antimicrobial	knitting, weaving	knitting, weaving	they do not use electronics or internet connection. This means that all of its functions will allow it to remain in a static state the entire time if summ	N/A	yes	yes	safe
47	E-Textile and its Applications	active smart textile	Smart flexible sensors/actuators non-invasive wearable	fabric	healthcare industry	knitting, weaving	knitting machine, weaving loom	These fabrics will actually change to adjust the conditions of the wearer, these fabrics can also be connected to the interret	N/A	yes	yes	safe
48	E-Textile and its Applications	very smart textiles	Smart flexible sensors/actuators non-invasive wearable	Fabric	healthcare industry, sport industry	knitting, weaving	knitting machine, weaving loom	able to sense, react and adapt their behaviour to the given circumstances	mechanical and friction risks due to washable process	yes	yes	safe
49	Textile-Based Strain Sensor for Human Motion Detection	textile strengh sensors	Flexible sensors/actuators	Fabric	textile industry, protective industry	knitting, weaving	knitting machine, weaving loom	a new generation of devices, they combine strength sensing functionality with weareability and high stretchability	mechanical and temperature risks at washable process	yes	yes	safe
50	A stretchable carbon nanotube strain sensor for human-motion detection	resistive strain sensor	Flexible sensors/actuators	Sensor	textile industry		-	is a sensors which respond to strain deformation that the microstructure changes in the conductive materials	-	yes	yes	sale
51	Textle-Only Capacitive Sensors with a Lockstitch Structure for Facile Integration in Any Areas of a Fabin	capacity stain sensor	Flexible sensors/actuators	Sensors	textile industry			is a electronic component consisted in 2 opsite electrons from active materials which are separated by one electric layer of insulating materials between	no	yes	yes	safe
52	Conductive Textiles: Types, Properties and Applications	conductive textile materials	Smart flexible sensors/actuators non-invasive wearable	fabric	textile industry,	weaving	weaving born	Conductive fabrics are materials that are made from, coated or blended with conductive metals including but not limited to gold, carbon, tilanium, nickel, silver, or copper. Base fabric materials include cotton, wool, polyester, and nylon	safe	yes	yes	safe

53	A wearable multifunctional fabric with excellent electromagnetic interference shielding and passive radiation heating performance.	Electromagnetic shielding EMs	Textiles for electromagnetic shielding	process	textile industry, automotive	woven, non-woven fabric, knitting fabric	weaving loop, knitting machine	Ems is the process of restricting the diffusion of electromagnetic fields into a space		no	yes	safe
54	para-Aramid Fiber Sheets for Simultaneous Mechanical and Thermal Protection in Extreme Environments	para-Aramid	Smart flexible sensors/actuators non-invasive wearable	porous, continuous para-aramid fiber sheets (pAFS)	Fabricated a non-woven fabric with ballistic and thermal protective properties	immersion Rotary Jet-Spinning	Nakanishi E3000 Motor (NR-3080S Spindle, EM-3080J Brushless motor, E3000 Controller, AL-C1204 Airline Kit	immersion Rotary Jet-Spinning	N/A	High antiballistic performance	Low thermal conductivity	Chemically Stable
55	Magnetic, conductive textile for multipurpose protective clothing and hybrid energy harvesting	Polydimethylsiloxane (PDMS) strips	Textiles for electromagnetic shielding	Carbon nanotubes (CNT) and Neodymium Iron Boron (NdFeB) microparticles on PDMS matrix	Flexible textile for multipurpose protection and hybrid energy harvesting	Triboelectric nanogenerator (TENG); Electromagnetic generator (EMG)	Chemical laboratory equipment; laser cutter	Heat curring or suspension; megnetisation	Includes nanoparticles	Electromagnetic shielding	Electric conductivity	Safe
56	Ultralight aerogel textiles based on aramid nanofibers composites with excellent thermal insulation and electromagnetic shielding properties	Aramid aerogel with modified carbon nanotubes	Textiles for electromagnetic shielding	Poly(p-phenylene terephthalamide) (PPTA), Carbon nanotubes	Thermal insulation and electromagnetic shield textileing equipment under harsh environments	Sonification; Wet Spinning; Freeze drying	No specified	Sonification; Wet Spinning; Freeze drying	Use of CNT during production	Electromagnetic shielding properties	High electric conductivity; Low thermal contactivity	Safe
57	Facile and scalable fabrication of stretchable flame- resistant yarm for temperature monitoring and strain sensing	Spandex/CNT@Aram id/Aramid (SCAA) yarn	Smart flexible sensors/actuators non-invasive wearable	Spandex; narbon nanotube (CNT)-coated aramid silver fibres; aramid silver fibres	Stretchable flame-resistant yarn for temperature monitoring and strain sensing for sensing e-textiles towards applications in harsh environment.	Spray-coating; Friction spinning	Air brush; oven; friction rollers	Spray-coating: Friction spinning	Use of CNT during production	Anti-fire dissipation properties	Electric conductivity; Low thermal conductivity	Safe
58	Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort	NiTi Filament for shape memory fabric (SME)	Smart flexible sensors/actuators non-invasive wearable	NiTi shape memory filament; aramid; Teflon (PTFE) film	Four-layered smart fabric systems (SFSs) incorporating a SMF layer into aramid fabric.	annealing; shape memory training	cylinder moulds; weaving machinery	weaving	N/A	N/A	Low heat transfer	Safe
59	Porous polyetherimide fiber fabricated by a facile micro-extrusion foaming for high temperature thermal insulation	Porous polyetherimide (PEI) fiber	Flexible sensors/actuators	Porous polyetherimide fiber, silica nanoparticles/sol solution (for hydrophobic coating)	Porous PEI fibers and textiles	Micro-extrusion foaming, nanoparticles sol coating	Autoclave, extruder, fiber collector (KR-530 U, Keran Technology Co., Ltd. China)	Extrusion, weaving	N/A	Low fire dissipation/self- extinguishing	Low heat conductivity;	Safe
60	Thermal insulation property of graphene/polymer coated textile based multi-layer fabric heating element with aramid fabric	Aramid; cotton	Textiles for electromagnetic shielding	Aramid; graphene/polymer coating on cotton	Multilayer insulating/heat producing textile	Hot pressing of conductive polymer on cotton fabric	Not specified	Weaving: knitting; sawing	N/A	N/A	Electron conductive heating element; low heat conductivity	Safe
61	Textiles in Electromagnetic Radiation Protection		Textiles for electromagnetic shielding	Polyester fibers, polyamide fibers, polyacrylic fibers and cellulose acetate fibers	Conductive fabrics	-	-					-
62	E-Textile Sensors for Sensory Therapeutic Products		Smart flexible sensors/actuators non-invasive wearable	printed inks on flexible materials	therapeutic products		Flexible sensors	-	Safe	-	-	Safe
63	Comfort Evaluation of Wearable Functional Textiles		Flexible sensors/actuators	-	Health, well-being, and work productivity, on the lose the functional aspects				Safe			Safe
64	Development of smart wearable sensors for life healthcare		Smart flexible sensors/actuators invasive wearable	Graphene-based wearable sensors, Hydrogel- based wearable sensors, Paper-based wearable sensors, Textile-based wearable sensors	-	graphene oxide, humidity sensor, Loofah sponge, ultralight 3D hybrid piezoresistive sensor						Safe
65	Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles	Silver nanoparticles	Nanoparticles ferrous for flexible semiconductors	cotton fibers				modification of the fibers coated by Ag NPs with hexadecytrimethoxysilane led to superhydrophobic cotton textiles			yes	safe
66	Non-invasive wearable chemical sensors in real-life applications		Smart flexible sensors/actuators non-invasive wearable	paper, textile, and hydroge	health monitoring and medical diagnosis			-			yes	yes
67	lonofibers: lonically Conductive Textile Fibers for Conformal i-Textiles		Microparticles ferrous for flexible semiconductors	metal particles, carbon allotropes				-			yes	yes
68	Smart textiles using fluid-driven artificial muscle fibers	Artificial muscle fibers	Textiles for compression	Artificial muscle fibers	Compression sleeves	Weaving/Knitting	Weaving/Knitting loom	knitting/weaving				N/A
69	A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Micelectric Prostheses: A Pilot Study		Textiles to control muscles' activity	Embedded array of textile electrodes	Forearm sleeve	Knitting	Knitting loom	knitting	-			
70	Smart textiles using fluid-driven artificial muscle fibers	Artificial muscle fibers	Textiles for compression	Artificial muscle fibers	Compression sleeves	Weaving/Knitting	Weaving/Knitting loom	knitting/weaving		-		N/A
71	A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Munelectric Prostheses: A Pilot Study	Embedded array of textile electrodes	Textiles to control muscles' activity	Embedded array of textile electrodes	Forearm sleeve	Knitting	Knitting loom	knitting	-	-		
	Munelectric Prostheses: A Plint Study	textile electrodes		in the electrones				819				

	Distribution and the second							
-								
3	Parama rechnologies for leaded (hardnoc, 20/7), edited by R. shisto gives an over-vew of parama technology was more detailed information. The Encyclopedia of Call Science and rechnology (costeand y R. Liu gives an outline of texter infisting							
4	hindaw comjournaleub/2017/1603101/							
5	https://www.tandfonier.com/doi/pdf10.108000405000.2017.1388111							
6	https://www.mdpi.com/2019-5/20/108/967							
7	https://www.tandfonter.com/doi/tai/10.1080/0040/500022111.639514							
8	https://journals.sagepub.com/doi/10.1177/0040517517869380							
9	https://www.innovationlab.de/dolessturgen/textles-feel/the-pressure-1							
10	https://doi.org/10.1002/app.48517							
11	https://doi.org/10.1016/j.mteer.2021.100590							
12	https://doi.org/10.1016/j.annon.2019.103823							
13	https://doi.org/10.1016/j.biosx.2021.100103							
14								
15	1. Chen, Y., Yan, X., Zhu, Y., Cui, M., Kong, L., Kuang, M., Zhang, X. and Wang, R., 2022. A carbon nanotube-based textle pressure sensor with high-temperature resistance. RSC advances, 12(36), pp.23091-23098. 2. Kobayashi, N., Izumi, H. and Morimoto, Y., 2017. Review of toxicity studies of carbon nanotubes. Journal of occupational health, pp.17-0089.							
16	Pointner, A., Preind, T., Malaar, S., Agner, R. and Haler, M., 2020. Knitted res: A highly flexible, force-sensitive knitted texile based on resistave yarms. In ACM SIGGRAPH 2020 Emerging Technologies (pp. 1-2).							
17	1. Krajewski, A.S., Magriez, K., Hehrer, R.J. and Schrank, V., 2013. Plezoelectric force response of novel 2D textile based PVDF sensors. IEEE Sensors Journal, 13(12), pp.4743-4748. 2. Lohmann, R., Vaster, B.J., Edubernan, G., Herzke, D., Lindstrom, A.B., Miller, M.F., Ng, C.A., Patton, S. and Scheringer, M., 2003. Are fluoropolymers really of low concern for human and environmental health and separate from other PFASY. Environmental science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Scheringer, M., 2004. Are fluoropolymers really of low concern for human and environmental health and separate from other PFASY. Environmental science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Scheringer, M., 2003. Are fluoropolymers really of low concern for human and environmental health and separate from other PFASY. Environmental science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Scheringer, M., 2003. Are fluoropolymers really of low concern for human and environmental health and separate from other PFASY. Environmental Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Scheringer, M., 2003. Are fluoropolymers really of low concern for human and environmental health and separate from other PFASY. Environmental Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12828. 3. Chiu, Eduber and Science & technology, 54(20), pp.12820-12820.							
18	1 Montazerian, H., Dalli, A., Milani, A.S. and Hoorfar, M., 2019. Prescressitive sensing in chopped carbon fiber embedded PDMS yarras. Composites Part B: Engineering, 164, pp.646-658.							
19	Li, Q., Si, M., Liu, T., Luo, Q., Zhang, T. and Wang, X., 2022. Stretchable conductive yarm with extreme electrical stability pushes fabrication of versatile textle stretchable electronics, 31, p. 101131.							
20	Guo, R.H., Jiang, S.X., Yuen, C.W.M., Ng, M.C.F. and Lan, J.W., 2013. Optimization of electroless nickel plating on polyester fabric. Fibers and Polymers, 14(3), pp.459-464.							
21	Huang, J., Li, J., Xu, X., Hua, L. and Lu, Z., 2022. In Sha Loading of Polypyrole onto Avantid Nanofiber and Carbon Nanotube Aerogel Fibers as Physiology and Motion Sensors. ACS nano.							
22	Nitson, E., Mateu, L., Spies, P. and Hagström, B., 2014. Energy harvesting from piezoelectric toxile fibers. Proceeda Engineering, 87, pp. 1569-1572.							
23	Maziz, A, Concas, A, Khald, A, Stalhand, J., Persson, N.K. and Jager, E.W., 2017. Knitting and weaving artificial muscles. Science advances, 3(1), p.e1600327.							
24	Lund, A. Rundprist, K., Nilsson, E., Yu, L., Hagshröm, B. and Müller, C., 2018. Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. ng/ Resulte Electronics, 2(1), pp.1-9.							
25	Lund, A. Rundprist, K., Nilsson, E., Yu, L., Hagshröm, B. and Müller, C., 2018. Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. ng/ Resulte Electronics, 2(1), pp.1-9.							
26	Ame Schwarz, Jean Hakuzimana, Anna Kaczynska, Jedrzej Banaszczyk, Philippe Westzroek, Eric McAdams, Gillan Moody, Yannis Chronis, Georgios Phiniotakis, Gibert De Mey, Dimitris Tseles, Lieva Van Langenhove, 2010/1/25 Surface and Coatings Technology vol 204 issue 9-10, pp1412-1418,Esevier							
27	Gabri Irene, Priniotakis Georgios, Chronis Isannis, Tzenachogiou Anastasis, Plachouras Diamanis, Chatzikonstantinou Marianth, Westorek Philippe, Soul Mari, a 2016/8/1 Diagnostic microbiology and infectious disease vol 85, issue 2, pp 205-209, Elsevier							
28	Philippe Westbroek, Georgios Prinitotais, Y Chronis, DI Tseles, 2007, Proceedings of 2nd International Scientific Conference eRa-2, Attens							
29	Georgios Prinitakis, Anastasios Tzerachogiou, Joannis Chronis, Philippe Westbroek, Lieva Van Langenhove, T Nyolong 12th World Textile Conference AUTEX-2012, pp 809-812							
30	D Tiseles, D Piromalis, A Tizerachogiou, E Kapsalas, G Priniciakis, I Chronis, 2008, Proceedings of eRA-3, Aegina Greece							
31	G Priniotakis, E Kapsalis, D Tseles, A Tzerachogiou, I Chronis, D Promalis, Proceedings of eRA-3, Aegina Greece							
32	A Tzerachogiou, G Prinicitatis, I Chronis, E Kapsalis, A Peppas, E Gyalinou, D Piromalis, D Tseles, L Karamparpas, international Conference eRA 5, 15:09:2010 til 18:09:2010 Greece							
33	Georgios PRINIOTAXIS, Anastasios TZERACHOGLOU, Ioannis CHRONIS, Lieva Van LANGENHOVE, Philippe WESTBROEK, Tebelio NYOKONG, 2012 Annals of the University of Oradea, Fascicle of Textiles volume 13, issue 2, pp 134-138, Directory of Open Access Journals							
34	MNohletespour Esfahani, Mohammad Iman & Zobeini, Omid & Narimani, Roya & Hoviatalab, Maryam & Moshini, Behzad & Parniarpour, Mohamad. (2012), ICEE 2012 - 20th Iranian Conference on Electrical Engineering. 1571-1576. 10.1109/IranianCEE 2012.8222610.							
35	https://pubs.rsc.org/en/content/articleanding/2021 /smid 1sm/0432h							
36	https://pubs.rsc.org/en/content/articlepd/22020/art/s/article/article/d/22020/art/s/article/article/d/22020/art/s/article/article/d/22020/art/s/article/article/d/22020/art/s/article/a							
37	https://www.researchgate.net/publication/332818657_Fervitie_Strain_Sensor_Based_on_Copper_Coated_Lycood_Type_Celulose_Fabric							
38	https://www.mdpi.com/2019-6412/11/149html							
39	https://journals.sagepub.com/bis/ful10.1177/15280837211037085							
40	https://opg.optica.org/be/fuller/cm/uti=ce/1-3-32134/siz48887							
41	https:/jpuba.acs.org/doi/10.1021/acs.araalchem.0c02211							
42	https://www.researchgate.net/publication/353786695 Three-Dimensional Aulog NanoparticleCrossed Carbon Nanotube SERS Substrate for the Detection of Maxed Toxic Molecules							
43	https://lopscience.icp.org/anticle/10.1089/17157-8999/82711012021.jpd							
44	Coye, S; Diamond, D. Smart Nandezelles: Materials and Their Application. In Encyclopedia of Materials: Science and Technology; Elsevier: New York, NY, USA 2010; pp. 1–5. ISBN 978-0-08-043152-9.							
45	Ghahremani Honarvar, M.; Latifu, M. Overview of wearabé decicronics and smart kottles, J. Text. Ind; 2017, 108, 631–662.							
46	Sonamugi Vawanathan, E-Fextel and its Applications, USK-Vo19, issue 3, ISSN 2321 336 2019							
47	Sonamugi Vawanathan, E-Fextel and its Applications, USK-Vo19, issue 3, ISSN 2321 336 2019							
48	Sommaring Vestionaring, b- Vestie and its Application, USA, Vol.9, State 3, SSN 2521 1391							
49	and grant grant grant and and grant and and grant and and the second control method in the second control method control method control method in the second control method control me							
50								
52	The same building or control of the building and a second same se							
52	The commence of the control of the c							
54	Gorzalez et al. Matter 3, 742-789 Sestember 2, 2020 https://doi.org/10.1016/inst12020.06.001							
55	Accl. Phys. Lett. 118, 143901 (2021): doi: 10.1053/6.044022							
56	Meramma Let al. Compating Communications. 35 (2022). 101346 https://doi.org/10.1016/j.coco.2022.101346							
57	Chemical Engineerin Journal 4/0 (2022) 138484							
59	Wann L at all Materials & Deejan 221 (2022) 110922 https://doi.org/10.1016/instates 2022 110822							
59	Zhou M, et al. Journal of CO2 Utilization 65 (2022) 102247 https://doi.org/10.1016/j.icou.2022.102247							
60	Kim H, Kim H, S. Lee S. Scientific Records. (2020) 10:17588. https://doi.org/10.1038/j.41688-020-74339-8							
	https://thutbuts/tize?/doudinot.res85158904/showsacered/airc.of/16122433-farescorse-contert-discostionmine/30P-tests: h Exctorametic Radiation Pr.od/Exciter=167046291585izenature=15c/17/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWWWWWWWSV6F-2onutols/30/H/BendSACC9R-8UB0/ECC-dTMSib/WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW							
61	Anycollov/bto/cmtatdic210H841MM0p8TABoaW.WoHwinDVmtiV236gNe+HGRIENgitevCDU0881TH350wFg0T1VTATCDNYaw8bbcTD1clqgfgGeOyTMY7ja=ceP4g_8KeyPainletaPKALLOHF5GGSLRBH4ZA							
62	https://e-tentiles-network.com/e-tentiles-ensors-for-							
63	https://www.mdpi.com/1996-1944/14/21/1466							
64	https://www.sciencedirect.com/science/article/pii/S266613812/100165							
65	https://www.sciencedartics/biobs/ii/S0109433211016435							
66	https://www.sciencedirect.com/science/article/bits/bit/S000267021004694							
67	https://winelitary.wiey.com/doi/ful10.1002/adm.202101692							
68	https://www.nathrec.com/articles/641966/02/15869.2							
69	https://www.indpi.com/1424-820/02/0866							
	Confunded by the							
- II) II (
- 11								
	A A A A A A A A A A A A A A A A A A A							

Disclaimer
The European Commission support for the production of this database does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
Acknowledgement
DigiTEX project (TEXTLE DisTALIZATION BASED ON DIGITAL EDUCATION AND INNOVATIVE E-TOOLS; project reference number 2020-1-9001-94226-HE-095335) is co-funded by the Ensmus+ programme of the European Union.